Pressure
$p=\frac{F}{A}$
Bulk Modulus
$E=\frac{-\Delta p}{(\Delta V)/V}$
Density
$\rho=m/V$
Specific Weight
$\gamma=mg/V$
Dynamic Viscosity
$\eta=\tau\left(\frac{\Delta y}{\Delta}\right)$
Kinematic Viscosity
$\nu=\eta/\rho$
Absolute and Gauge pressure $p_{\rm abs}=p_{\rm gauge} + p_{\rm atm}$
Pressure-elevation relationship $\Delta p=\gamma h$
Force on a submerged plane area $F_R=\gamma h_c A$
Location of center of pressure $L_p=L_c + \dfrac{I_c}{L_c A}\,, \qquad h_p=h_c + \dfrac{I_c \sin^2\theta}{h_c A}$
Piezometric Head     $h_a=p_a/\gamma$ Buoyant force     $F_b=\gamma_f\;V_d$
Volume, Weight and Mass Flow Rate $Q=Av,\qquad W=\gamma Q,\qquad M=\rho Q$
Continuity Equation $\rho_1 A_1 v_1=\rho_2 A_2 v_2\,,\qquad A_1 v_1= A_2 v_2$ (Liquids)
General energy eq. (Flow: $1 \rightarrow 2$) $\dfrac{p_1}{\gamma}+z_1+\dfrac{v_1^2}{2g}+h_A-h_R-h_L=\dfrac{p_2}{\gamma}+z_2+\dfrac{v_2^2}{2g}$
Power added to fluid by a pump $P_A=h_A W=h_A\gamma Q$
Pump efficiency $e_M=\frac{\text{Power delivered to fluid}}{\text{Power consumed by pump}}=\dfrac{P_A}{P_I}$
Power removed from fluid by a motor $P_R=h_R W=h_R\gamma Q$
Motor efficiency $e_M=\frac{\text{Power output from motor}}{\text{Power delivered by fluid}}=\dfrac{P_O}{P_R}$
Reynolds Number -- circular sections $N_R=\dfrac{v D\rho}{\eta}=\dfrac{v D}{\nu}$
Darcy's equation for energy loss $h_L=f\times\dfrac{L}{D}\times\dfrac{v^2}{2g}$
Minor Losses $h_L=K\left(v^2/2g\right)$
    $K$ for valves and fittings $K=\left(L_e/D\right)f_T$
    $K$ for sudden enlargement $K\approx \left[1-\left(A_1/A_2\right)\right]^2$
    $K$ for sudden contraction $K\approx 0.5\left[1-\left(A_2/A_1\right)\right]$
Force equation in x-direction $F_x=\rho Q \Delta v_x=\rho Q\left(v_{2_x}-v_{1_x}\right)$
Drag Force
$F_D=C_D\left(\rho v^2/2\right)A$
Lift Force
$F_L=C_L\left(\rho v^2/2\right)A$
Stoke's Law
$F_D=3\pi\eta v D$
Ideal gas law
$\dfrac{p}{\gamma T}=\text{constant}=R$